
A MEMS based System to control objects in home automation

Giovanni Di Blasi, Selene Gallo
Department of Electrical, Electronics and Information Engineering,University of Catania

Italy,
gio.diblasi@gmail.com

selene.gallo@gmail.com

Abstract— This paper shows a system that allows user to point
an object into a room and take the control of it, send commands
that allow to do some operations. The system is composed from two
parts: server and client. The server takes data from an IMU, these
data are used to detect the position indicated by user. The client is
an graphical interface that simulates a software to control real
objects.

1. INTRODUCTION

Recently it are making great efforts to design systems

that allow to automate, or make easier, execution of daily
acts. These applications in addition to making more
comfortable the action that a person must do,also helps those
who, for pathological reason, would find it difficult to make
gesture that normally would not lead to considerable strain.
This systems are widely used in home automation context.
This is a multidisciplinary science that allow to make more
user friendly ma-made environment, it allow an immediate
interaction with objects that surround the user, through
interfaces like keyboard, touch-screen and other.
This work provides a server that interact directly with the
user, so it is able to choose which object to control and to
send desired command (example to open a window).
The server translates these information in frame to send to
client in wireless mode.
In this paper it show a graphical interface that emulates the
client that interacts with the controllable objects, inside
operative environment in which user works.
Finally an analogy is made between GUI and a real client.

2. SERVER SIDE

In this work a server interacts directly with the user. An IMU
is placed on the hand of the user to determine which object
he wants to control.

2.1 iNemo

An important instrument for the realization of this work is
the IMU platform. This device applied to a moving object is

able to detect speed and direction using a variety of sensors
including accelerometers and gyroscopes.
The IMU platform used is called "INEMO", developed by
ST Microelectronics.
This board finds many areas of applications such as virtual
reality, enhanced reality, stabilization of platforms, human-
machine interfaces and robotics.
INEMO has the following characteristics:

• a LPR530AL : Two-axis gyro (pitch, roll) with a
full scale at 300 ° / s

• a LPY530AL : Two-axis gyro (pitch, yaw) with a
full scale at 300 ° / s

• a LIS331DLH : triax accelerometer with a full scale
selectable

• a HMC5843 : magnetometer triax

• a LPS001DL : pressure sensor

• a STLM75 : a temperature sensor with a range
between -55 ° C to +125 ° C

Apart from these sensors INEMO also offers a SD card slot,
a USB 2.0 connection, a ZigBee module slot and can be
powered via USB or external power supply.
INEMO provides the data in various ways, each sensor
provides the data found:

• The values of the three-axis accelerometer in mg.
• A value for each axis of the gyroscopes in dps

(degrees per second)

• A mga value in regard to the magnetometer

• A dmbar a value for the pressure sensor

• A value for the temperature sensor in ° C d

In addition to the values for each sensor INEM also
incorporates a software that can return more complex values
that are the result of a merger between the different sensors
(a Kalman filter is used).
Below is shown the board iNemo.

The iNemo board has a proper reference system. It is

placd on the hand of the user so that his x axis point into
direction reported by user. From data given by IMU is
possible to determine which object is pointed by the user.

Fig. 1: iNemo reference system

 2.2 Gesture recognition

 Once user has engaged an object, he can send it a command
making a know gesture.
The system is being configured to recognize know gestures
and to record a gesture. Example of gestures are:

• “open” gesture: user moves his hand from left to
right holding the hand parallel to floor.

• “close” gesture: user moves his hand from right to
left.

• “up” gesture: user moves his hand from bottom to
top with the hand parallel to floor.

• “down” gesture: hand is moved from top to bottom.

To recognize the gestures, accelerations are used. These
accelerations are detected by accelerometer mounted on
iNemo. This data are processed by two filters:

 One of them filter vibrations and the other filter
accelerations that are similar. The filtered data are quantized
and processed by an Hidden Markov Model. After that, the
data are classified using probabilistic method.

3. Client Side

The client receives frame from server and it controls the
objects in operative environment. In this work the client is
implemented by a graphical interface using Ogre3D.

3.1 Ogre3D

 OGRE is the acronym for Object-Oriented Rendering
Engine, it's a rendering 3D engine, flexible and scene
oriented. The engine is a free software , under LGPL
license,and has an active community. The main role of
OGRE is to give solutions for graphic rendering.
It also includes structures like matrix,vectors and tools for
memory management. Choose Ogre let developers to use
any library for audio,physics, etc.
Ogre is object-oriented with a structure that allow to use
plug-in to add features. Because it is scene oriented, it is
supported by many scene manager like octree and BSP.
Ogre is multi-platform and supports directX and OpenGL.
This engine also has a compositing manager with a scripting
language and a full-window post-processing to manage
effects like HDR, blooming, saturation,lighting and noise.

3.2 Graphical interfaces

 The GUI developed is a representation of operative
environment. It shows a room with the objects recorded in
the server.

Fig. 2: GUI screenshot

The construction of the room is driven by informations that
this client receives with the frames exchanged during the
connection stage.
Objects are placed in according to data received with
“Object” frames.
Each object are surrounded by a sphere, this sphere indicates
the objects state, in particular:

• a transparent sphere means that object is in idle
mode

• a red sphere indicates that the object is detected
• a green sphere indicates that the object is engaged.

Each time the client receive a “state” frame, if the state is
“ENGAGE” or “DETECTED” the sphere of the object,
indicated by “object identifier” field, is changed
(respectively green or red). If the state is “IDLE” all spheres
are put in transparent mode.
When client receive a “command” frame, it checks his
“object identifier” field to control if this object is engaged (it
possible to give command only to an engaged object). The
controlled object change his aspect in function to command
received.

Fig. 3: Example of detected object

Fig. 4: Example of engaged object

4.3 Real Client

 In this section a real client is described. It consider the
following scenario: a computer communicates, in wireless

mode, with object controlled by user. Each of these objects
integrates a microcontroller, actuators(Engines, switches,..)
and a wireless module (for example a zigbee module).
As well as, in the graphical interface, it associates a sphere
to each objects, in the real environment each device is
equipped by a led to give a feedback to user.
The computer has the responsible of distributing fames
which contain state of objects and the command to send.
The other modules of the network receive these frame and
turn on (or turn off) the led and, eventually, operate the
actuators .
In details, the system should function as follows:
The computer has a list of controllable object, and for each
category of these a list of command permitted.
When computer receives frame by server, it makes some
control to avoid inconsistencies before send frame to device:
a first type of control provides to check if the command
received for a specific object is in the list of category of
that object.
For “device” category is less easy: this category contains
several kind of object, so the client doesn't know what
commands are permitted. A solution consist in transfer, only
for this category, of the control to device (each device
defines in his firmware what command can manage).
Another control avoids to send duplicated commands: if a
command is sent twice consecutively, second time this
command is ignored. In this way network overload is
avoided.
Devices receive frame sent by client, if type of this frame is
“object's state” then the led is turned on/off, if it is
“command” the actuator is activated.
A Led red is turned on if object is “detected”, led green if it
is “engaged”. Each led is turned off if the state is “idle”. This
is the same behavior seen for the spheres in the graphical
interface.
The kind of actuator depends by object category: for a
window, for example, it will be an engine(to open or close) ,
for a lamp it will be a switch.

 Fig. 5: Real client application

4. Communication

Server and client communicate through sockets. The server
receive a connection request by a client and sends a
“connectionACK” that includes the recorded objects
number. In this way the client knows how many objects are
in the room and , for each objects, sends a frame
“ReqObject” to have information about them. The server
that receive this frame, answers with a “Object” frame that
includes following information:

• object identifier.
• object category.
• a flag to determine if the object is under user

control.

In a second moment client send a “ReqParam” frame in
order to obtain information about the operative environment.
When the server receive the “ReqParam” frame, it responds
with a “Parameter” frame with all information needed.
At this point the server send to client two kind of frame:

• State
• Command

The first kind of frame contains information about the
objects state. It specifies if there is an object under the user
control, includes the object identifier and a field that
assumes following values:

• DETECT: object, specified by identifier, is detected
• ENGAGE: object, specified by identifier, is

engaged
• IDLE: all objects are in idle state.

The second kind of frame, “Command”, specifies the
command given by user to a specific object(for example
“open”, “close”,etc.). In this frame there are following field:

• Object identifier
• Command number

the command number is an identifier of a specific command.
All of this frame are confirmed by an ACK transmission.

5. Conclusions

 The system designed aid user to make routine action, it can
work in home environments and other man-made
environments. Empiric proofs have enlightening a good

precision of the system. There are some imprecision on
recognizing gestures because it used a probabilistic method.

10. References

• Oliver J. Woodman. An introduction to inertial

navigation. Technical Report 696, University of

Cambridge, August 2007.

• N.Abbate, A. Basile,C. Brigante, A. Faulisi,

Development of a MEMS based wearable motion

capture system. HSI'09 Proceedings of

the 2nd conference on Human System

Interactions.

• STEVAL-MKI062V1, iNEMO. User Manual.

Available:

http://www.st.com/internet/com/TECHNICAL_RE

SOURCES/TECHNICAL_LITERATURE/USER_

MANUAL/CD00241278.pdf

• Gary Bishop and Greg Welch, “An Introduction to

the Kalman Filter”. University of North Carolina

SIGGRAPH 2001 course notes. ACM Inc., North

Carolina,2001 .

• Giuseppe Mastroeni, Riconoscimento di gesti

tramite accelerometro e applicazioni orientate alla

domotica per S.O. Android. Master Thesis 2010.

• Ogre: Open Source 3D Graphics Engine, sito:

http://www.ogre3d.org.

• Ogre 3D Italia, sito: http://www.ogre3d.it.

